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Abstract

The dynamic propagation of adiabatic shear bands is analysed. In the numerical simulations, a layer of finite length

and finite thickness is subjected to shear loading. After a transient, a steady state is attained in which adiabatic shear

bands propagate with a constant velocity. The evolution of the shear band speed is determined as a function of the

applied velocity. A dimensional analysis allows to determine a general law describing the influence of each problem’s

parameter on the shear band speed. The effects of heat conduction are discussed in details. Finally the concept of a

process zone is introduced. The process zone is a region propagating with the shear band tip, where an intense stress

softening is produced by thermo-mechanical coupling. It is shown how the shear band propagation is controlled by this

stress softening.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Adiabatic shear banding has been widely studied during the last decades as it is a phenomenon fre-
quently encountered in materials submitted to high strain rates. The mechanism of formation of these
bands as a result of thermo-mechanical instability has been analysed in detail by many authors, e.g. Clifton
(1980), Bai (1982), Merzer (1982), Wright and Batra (1985), Molinari and Clifton (1987), Giovanola
(1988a,b) and Molinari (1988), but the phenomenon of propagation is less known.

Among the recent studies carried out on this subject, the work of Marchand and Duffy (1988) enabled to
evaluate the speed of propagation of a shear band in a thin-walled HY 100 steel tube twisted at a strain rate
of 1600 s�1. The speed of propagation was estimated to be 520 m/s in the case where only one tip of the
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band propagates and 260 m/s in the case of a two-directional propagation. Kalthoff and Wrinkler (1987)
studied double-notched plates impacted with a cylindrical projectile. They reported a transition of the
failure mode between crack propagation and adiabatic shear band propagation depending on the notch-tip
radius and the impact velocity. Grady (1992) considered a simple model of propagating shear bands, based
on results of a one-dimensional analysis. Batra and Zhang (1994) reproduced numerically the experiments
of Marchand and Duffy for three different values of strain rates: 1000, 5000 and 25 000 s�1. They obtained a
shear band propagating in both directions along the tube circumference and with a non-stationary speed
varying, for example for a strain rate of 1000 s�1, from 40 to 260 m/s. They also found a strong dependence
of the speed of propagation on the nominal strain rate. Gioia and Ortiz (1996) used a boundary layer
theory to study the two-dimensional structure of a shear band propagating in a thermo-viscoplastic solid.
Zhou et al. (1996a) used impacted prenotched plates to study numerically and experimentally the propa-
gation of an adiabatic shear band in C300 steel. A strong dependence of shear band speed on impact
velocity, at lower impact velocities, and a tendency to saturate at higher impact velocities were observed.
More recently, Mercier and Molinari (1998) developed an analytical model to determine the speed of
propagation of an adiabatic shear band propagating into an infinite layer of finite thickness submitted to
shear loading. The influence of strain hardening, strain-rate sensitivity, thermal softening and elastic shear
modulus was characterized on the shear band speed and on the length of the process zone. Heat conduction
was neglected. With this model and for a CRS 1018 steel, the shear band velocity reported was about 1200
m/s.

In this paper, the propagation of an adiabatic shear band is modelled by numerical simulations. A layer
of finite length and finite thickness is submitted to simple shear. Heat conduction is taken into account.
After a transient, a steady state is attained in which the band propagates with a constant velocity.

The paper is organized as follows. Firstly, the model and the constitutive equations are presented. Then,
the results giving the evolution of the shear band speed as a function of the applied velocity are shown. A
comparison is made between the case where heat conduction is taken into account and the adiabatic case.
The width of the shear band is evaluated. In the followings of the paper, a dimensional analysis allows to
determine a general law describing the influence of each problem’s parameter on the shear band speed.
Finally our attention is focussed on the process zone, which is defined as the region near the shear band tip
where the essential part of the localization process occurs. It is shown that shear band propagation is driven
by the stress softening produced within the process zone.

2. Modelling

We assume the material to be elastic thermo-viscoplastic. The elastic law takes the following form:

r�
ij ¼ Cijkldekl ð1Þ

where Cijkl are the elastic moduli and dekl is the elastic strain rate. The total strain rate d is the sum of the
plastic strain rate dp and the elastic strain rate de.

d ¼ dp þ de ð2Þ

In (1), r�
ij ¼ _rrij � xjkrki � xikrkj denotes the Jaumann rate of the stress tensor, with xjk being the anti-

symmetric part of the velocity gradient.
Two distinct constitutive laws are studied to govern the plastic part of the deformation. The first one

from Molinari and Clifton [6]:

re ¼ Kð�eep þ ep0Þ
nT�mðDp

eq þ D
p
0Þ
m ð3Þ
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where re and Dp
eq represent the effective stress and the effective plastic strain rate, respectively given by

re ¼
3

2
sijsij

� �1=2

; Dp
eq ¼

2

3
dpijd

p
ij

� �1=2

ð4Þ

sij corresponds to the deviatoric stress tensor and dpij is given by the J2 flow theory:

dpij ¼
3

2

Dp
eq

re

sij ð5Þ

The cumulated plastic strain is defined by:

�eepðtÞ ¼
Z t

0

Dp
eqðt0Þdt0 ð6Þ

The flow stress level is scaled by K, ep0 is a plastic prestrain, n is the strain hardening exponent (n > 0), T is
the absolute temperature, m (m > 0) and m (m > 0) are respectively the thermal softening and the strain rate
sensitivity exponents.

The values of this constitutive law’s parameters are reported in Table 1 for a CRS 1018 steel. These
values were found in Clifton et al. (1984) for nominal strain rates varying from 700 to 1200 s�1. For high
temperatures the constitutive law (3) becomes unadapted as the stress drops to only half its initial value
when the melting temperature is reached.

As a consequence the second constitutive law is introduced, which keeps the same structure as (3) but
where the stress drops to zero when the melting temperature is reached:

re ¼ K 0ð�eep þ ep0Þ
nðDp

eq þ D
p
0Þ
m

1

�
� T � T0

Tm � T0

� �p�
ð7Þ

T0 and Tm are the initial and melting temperatures respectively (T0 ¼ 300 K and Tm ¼ 1800 K), K 0 corre-
sponds to KT�m

0 and p adjusts the rate of the stress drop. The value of p (¼ 0.85) is chosen to make (3) and
(7) as close as possible for temperatures included between 300 and 500 K and for a strain rate _cc ¼ 1000 s�1,
see Fig. 1.

The comparison between those two constitutive laws will be carried out in order to see the influence of
the stress drop on the shear band propagation.

At high strain rates (P 103–104 s�1 for steels), a strong increase of the strain rate sensitivity is observed.
This phenomenon is not accounted for by the laws (3) and (7). However, by changing the value of m in
these laws, the influence of the strain rate sensitivity on shear band propagation will be analysed.

Table 1

Material parameters of CRS 1018 steel

Parameter CRS 1018

K 6300� 106 Pa

m 0.019

n 0.015

m 0.38

Cp 500 J/kgK

k 50 W/mK

q 7800 kgm�3

ep0 0.057

Dp
0 10�3

l 80 GPa
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Considering our problem as two-dimensional, the energy equation providing the evolution law for the
temperature has the form:

qCp _TT � k o2T
ox2

�
þ o2T

oy2

�
¼ bre

_�ee�eep ð8Þ

where Cp is the heat capacity, q is the mass density, k is the heat conductivity and b is the Taylor–Quinney
coefficient which defines the fraction of plastic work converted into heat; usually b is taken constant and
equal to 0.9.

We consider a specimen of finite length L with uniform properties and uniform height 2h, Fig. 2. A frame
Oxy is defined, with Ox being the shear direction. Constant velocities vx ¼ 	V and vy ¼ 0 are prescribed at
the boundaries y ¼ þh and y ¼ �h respectively. Displacements of the boundary x ¼ 0 are imposed to be
equal to those of the boundary x ¼ L, in order to better approach the tubular specimen used in Marchand
and Duffy’s experiments. The shear layer considered here can be viewed as the wall of the tube developed in
a plane, with the difference that we consider here plane strain conditions, all quantities being independent of
z. The total length of the layer is 200 mm and the width 2h is equal to 2.5 mm, see Fig. 2. A geometrical
defect is introduced on a small part of the specimen by imposing a reduction of thickness of 20% on a
rectangular domain (
60 lm in y-direction and 
200 lm in x-direction). The magnitude of this defect plays

Fig. 1. Evolution of the effective stress re in terms of temperature for cp ¼ 1, _ccp ¼ 1000 s�1 and for two different hardening laws (3) and

(7). For the constitutive law (7), the parameter p equals 0.85. Note that, for these two laws, the thermal softening is identical when

3006 T 6 500 K, but differs significantly for larger temperatures.

Fig. 2. Schematic view of a finite layer of steel, length L ¼ 200 mm, width 2h ¼ 2:5 mm. Constant velocities vx ¼ 	V and vy ¼ 0 are

applied at the boundaries y ¼ 	h. Periodic boundary conditions are taken at the extremities x ¼ 0 and x ¼ L. An initial geometrical

defect is introduced (thickness edef < e, length 
200 lm, width 
60 lm).
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a role on the time to localization but has no effect on the stationary shear band speed. We chose a high
defect amplitude to spare some calculation time. This zone of lower thickness is situated in the middle of the
specimen at the left boundary. Adiabatic thermal conditions are assumed on the specimen boundaries.

The initial velocity field is supposed to vary linearly from vx ¼ �V on the boundary y ¼ �h to vx ¼ þV
on the boundary y ¼ h. These conditions correspond to the velocity field existing in Marchand and Duffy’s
specimen (1988) when the adiabatic shear band initiates.

Numerical analyses are performed with the FE ABAQUS/Explicit code (2000). A two-dimensional finite
element model is applied. The available ‘plane strain’ 2D elements CPE4RT are used.

3. Influence of loading conditions and of material and geometrical parameters

Nominal strain rates varying from _cc ¼ 400 to 2:4� 105 s�1 are considered. They correspond to applied
velocities V in the range from 0.5 to 300 m/s as _cc ¼ V =h. After a transient, a steady state is attained in which
two shear bands emanating from the boundaries x ¼ 0 and x ¼ L propagate with a constant velocity. The
presence of those two bands is due to the periodicity on the boundary conditions imposed at these ex-
tremities. It is of note that in this problem, the shear band width is structured by heat conductivity.
Therefore the results obtained are mesh independent as the width of the shear band is physically deter-
mined.

3.1. Velocity profiles

In the region situated far ahead the band, the velocity profile is linear on vx (and vy ¼ 0) while in the
region situated behind the shear band tip and on each side of the adiabatic shear band, we have rigid body
motions with velocities vx ¼ 	V (Fig. 3).

Fig. 3. (a) View of the component vx of the velocity profile for a nominal strain rate of 4� 104 s�1. The region situated far ahead the

shear band tip is submitted to a linear velocity profile while the regions situated behind the shear band tip are submitted to rigid body

motions. (b) Schematic view of the transition between the two vx velocity profiles.
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Along the y-direction, the velocity field vy presents negative values at the tip of the shear band (Fig. 4).
These negative values indicate a material transfer from the upper to the lower part of the specimen, phe-
nomenon already reported by Mercier and Molinari (1998) in their two-dimensional analytical model. This
material flow is necessary to get a band propagation in a layer of finite thickness subjected to the boundary
conditions specified on the Fig. 2.

3.2. Dependence of the shear band speed upon the applied velocity (stationary conditions)

The influence of the applied velocity V on the shear band propagation speed C is illustrated in Fig. 5. To
evaluate C, strain isolines are followed with time. Both constitutive laws give the same results. This point
will be discussed later.

Three stages are visible according to Fig. 5. A zoom of the C versus V curve for low velocities reveals the
existence of a threshold Vc for the applied velocity below which no shear band propagation is obtained. This
minimum value was already reported by Zhou et al. (1996a,b) for impacted prenotched plates of C300 steel
(see Fig. 11 of Zhou et al., 1996b). As the width of the specimen is fixed, the minimum velocity corresponds
to a minimum strain rate. The existence of this minimum strain rate for localization was already predicted
by Wright and Walter (1987).

In stage I, the variation of C upon V is almost linear. Stage II shows a tendency towards an asymptotic
value and finally, in stage III, a very slight evolution of C is observed with V. Although Zhou et al.
(1996a,b) could not reach any stationary process in their numerical work, they revealed, using an average
shear band speed, the presence of stages I and II but could not characterize the stage III because of a lack of
data at very high strain rates.

3.3. Evolution of the shear band width w as a function of the applied velocity V

To capture the dependence of the shear band width with respect to V, a great attention must be given to
the mesh used for the calculations, as the size of the shear band width can be very small (<10 lm). To find
an acceptable compromise between the quality of the solution and the calculation time, several meshes are
considered. The length of the modelled specimen must be large enough to allow the shear band to reach a
stationary process and to prevent the strong interaction between the two bands emanating from the left and
right edges. Moreover, the localization process must take place on several elements to avoid mesh de-
pendence. As a wide range of nominal strain rates is considered and as the width of the shear band is
directly dependent on this strain rate, the meshes represented in Fig. 6 are used. The first one (a) is used for

Fig. 4. View of the velocity component vy at the tip of the shear band for a nominal strain rate of 4� 104 s�1. The negative values of vy
indicate a flow of material from the upper part of the specimen to the lower part.
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Fig. 6. Meshes used for the calculations. a: for V < 5 m/s, b: for 56 V < 50 m/s, c: for V P 50 m/s.

Fig. 5. Effects of the applied velocity V on the stationary shear band speed C. A CRS 1018 steel is considered and two different

constitutive laws (3) and (7) are used. The enlarged box shows the existence of a critical velocity Vc below which no propagation is

observed due to heat conductivity effects: transition from isothermal (V � Vc) to adiabatic process (V � Vc). Note the presence of three
stages. In stage I (V < V �), the band propagation is controlled by external work. In stage III, the propagation is driven by the elastic

energy release.
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applied velocities V < 5 m/s and includes six 25-lm width central elements with a regular progression along
the y-direction. The second one (b) is used for 56 V < 50 m/s and the central elements are 10-lm width.
The last one (c) is used for applied velocities V P 50 m/s. This mesh has six 2-lm width central elements but
shows a rapid evolution of the element size when leaving the shear band zone to spare some calculation
time.

The dependence of the shear band width w upon V is illustrated in Fig. 7 for constitutive laws (3) and (7);
w characterizes the width of the zone having a strain rate bigger than 1/10 of the maximum strain rate. The
size of the shear band is measured far behind the shear band tip. An increase of V leads to a reduction of w
as the produced heat has less time to diffuse in the specimen. According to Fig. 7, the following rela-
tionships are obtained for w:

w ¼ aV �0:5 ð9Þ

for constitutive law (3) and

w ¼ bV �0:96 
 bV �1 ð10Þ

for constitutive law (7). Because of the low values of w obtained for constitutive law (7) a finer mesh should
be used for high values of V.

Wright and Ockendon (1992) and Dinzart and Molinari (1998) obtained an expression similar to (10) in
their one-dimensional quasi-static analysis of a fully formed shear band. Using a constitutive law in which
the stress drops linearly when the temperature increases, they found that the shear band width was inversely
proportional to the velocity applied on the specimen. As in constitutive law (7), the stress drop due to
thermal softening is almost linear for p ¼ 0:85, it can be observed that the results obtained by these authors
are comparable to those reported here.

As a conclusion, the width of the shear band is directly linked to the type of constitutive law considered.
Wright and Ravichandran (1997) already obtained asymptotic results for fairly general flow laws including
an error criterion used in evaluating its applicability to several common flow rules. Interesting results on the
structure of a fully developed band were also given by Glimm et al. (1993). However it is possible to
compare the values of w obtained in our simulations with those reported by the experimental tests of
Marchand and Duffy (1988) on a CRS 1018 steel. They measured for a nominal strain rate of 1600 s�1 (i.e.
for an applied velocity V ¼ 2 m/s) shear band widths of the order of 100 lm. For this value of strain rate,

Fig. 7. Evolution of the shear band width w as a function of the applied velocity V for two different constitutive laws (3) and (7).
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the values of w reported in our simulations are respectively 80 lm for constitutive law (3) and 20 lm for
constitutive law (7).

3.4. Comparison with the adiabatic case

To analyse the effects of heat conduction on the shear band propagation, the dependence of the shear
band speed upon the applied velocity is analysed here by neglecting heat conductivity (adiabatic condi-
tions). As the results obtained in the case including heat conduction were the same for both constitutive
laws (3) and (7), adiabatic calculations are carried out only for the law (3). In the adiabatic framework, the
shear band width w is no more defined because of the absence of heat diffusion. Then, the localization of
deformation appears to be concentrated on a single element which determines artificially the width of the
shear band.

If we attribute to this central element a width wel identical to the shear band width calculated in the full
problem including heat conduction, the results shown in Fig. 8 are obtained. These results are very close for
both configurations (adiabatic and heat conducting cases), excepted for low values of V. For V < Vc, no
shear band propagation is observed in the calculations including heat conductivity. Consequently, an ar-
bitrary value is introduced for wel in the adiabatic configuration. The calculations show that the shear band
speed C is not affected when changing the value of wel from 150 to 250 lm. It is also important to note that,
in the adiabatic case, no critical velocity Vc is observed for the shear band propagation. Mercier and
Molinari (1998) have already reported heat conduction to be responsible for the existence of this critical
velocity Vc.

Then, if we introduce in the adiabatic problem an arbitrary value of wel (100 lm), the results concerning
the shear band velocity are quite similar to those obtained when accounting for heat conduction, excepted
for V < Vc. Consequently, the shear band width has only a slight influence on the shear band speed (for a
reasonable variation of w).

Fig. 8. Effects of the applied velocity V on the stationary shear band speed C for a CRS 1018 steel; comparison between the adiabatic

case and the problem with heat conduction. In the adiabatic case, the value of the shear band width is arbitrarily controlled by the

width wel of the central element (at y ¼ 0). Calculations are conducted by taking wel equal to the width obtained in the calculations with

heat conduction. Vc is the critical applied velocity beyond which the shear band propagates in the thermal conducting material. Note

that Vc ¼ 0 in the adiabatic case.
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To summarize, the main effects of heat conductivity are the following:

• the shear band width is structured by heat diffusion,
• heat conductivity is responsible for the existence of a critical velocity Vc below which no shear band prop-

agation is observed.

For V > Vc, the propagation process is quasi adiabatic and the shear band velocity is almost unaffected
by heat diffusion (for instance weak effect of w on C).

3.5. Energy balance

The energy balance written for the whole volume is:

_WW ¼ _KK þ _EE þ D ð11Þ
in the adiabatic case. _WW is the rate of external work, _KK is the rate of change of kinetic energy, _EE is the elastic
energy release rate and D is the rate of plastic deformation work. The variation of kinetic energy is due to
the change of the velocity profile resulting from the propagation of the shear band tip. The change of elastic
energy corresponds to the energy recovered from the stress drop behind the shear band tip.

According to the numerical results, the following observations are made:

• _KK þ _EE < 0 for stage I,
• _KK þ _EE > 0 for stages II and III.

The expression characterizing the transition between stages I and II is

_KK þ _EE ¼ 0 ð12Þ
The velocity V � corresponding to this transition can be evaluated by giving approximative expressions for _KK
and _EE. The expression for _KK is:

_KK ¼ 4

3
qV 2 h

�
� w
2

�
C ð13Þ

The kinetic energy K has been evaluated at two times t and t þ dt. During this time interval, the shear band
has covered the distance Cdt. The rate of change of kinetic energy _KK is obtained by considering a slice of
length Cdt submitted to a change of velocity profile from a linear one to a piecewise constant one corre-
sponding to rigid body motions, see Fig. 3b.

Considering s as the value of the shear stress far ahead the tip of the band, the numerical results obtained
with the constitutive law reported in (3) reveal a stress drop to the value s=2 far behind the shear band tip.
Thus the rate of change of elastic energy of the specimen is:

_EE ¼ � 3

2

s2

l
hC ð14Þ

Using the law (7) instead of (3), the stress almost drops to zero far behind the shear band tip. The ex-
pression for _EE becomes:

_EE ¼ �2 s2

l
hC ð15Þ

Using (12) with (13) and (14), V � is evaluated as:

V � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9s�2h
8lqðh� w

2
Þ

s
ð16Þ
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Replacing (14) by (15), V � becomes

V � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3s�2h
2lqðh� w

2
Þ

s
ð17Þ

where s� is the shear stress far ahead the band tip, corresponding to the applied velocity V �. The shear band
width w is small with respect to the width of the shear layer 2h. Thus V � depends weakly upon the shear
band width in general and (16) and (17) can be approximated by:

V � ¼

ffiffiffiffiffiffiffiffi
9s�2

8lq

s
and V � ¼

ffiffiffiffiffiffiffiffi
3s�2

2lq

s
ð18Þ

The relationship (18) give implicit expressions for V �, since s� depends on V �. By iterative evaluations, we
obtain 196 V �

6 22 m/s. These values of V � are comparable to the one provided by numerical simulations,
i.e. approximately 20 m/s.

3.6. Influence of material properties on V �

The relationship (17) clearly illustrates the influence on V � of the elastic shear modulus, of the mass
density and of the stress level. These dependencies are verified to be in agreement with the results of nu-
merical simulations (see Table 2).

Reporting the value of V � calculated above on the C–V diagram, see Fig. 5, it can be checked that V �

characterizes the end of the linear part of the diagram (stage I).

3.7. Dimensional analysis

A dimensional analysis is made in order to present and analyse the numerical results in a rational way. A
special attention is accorded to the dependence of the shear band speed (C) with respect to the material
parameters (l: elastic shear modulus, q: mass density, Cp: specific heat, k: heat conductivity, n: strain
hardening, m: strain rate sensitivity, b: Taylor–Quinney coefficient, K: stress level), to the loading condi-
tions (V: applied velocity, T0: initial temperature) and to geometry (h: half width of the sheared layer, L:
length of the layer, edef : defect thickness)

Using the Vashy-Buckingham theorem, the following relationship is obtained:

C
V

¼ F K
l
;
qV 2

l
;
qCpT0

l
;
kT0
V lh

;
h
L
;
h
edef

;m; n; b
� �

ð19Þ

Table 2

Comparison between the values of V � calculated with (18) and those obtained by numerical simulations

Properties V � (m/s) calculated

with (18)

V � numerical

simulations (m/s)

l ¼ 80 GPa, q ¼ 7800 kgm�3, K ¼ 6300� 106 Int. Syst. 196 V 6 22 
20
l ¼ 40 GPa, q ¼ 7800 kgm�3, K ¼ 6300� 106 Int. Syst. 276 V 6 31 
30
l ¼ 580 GPa, q ¼ 7800 kgm�3, K ¼ 6300� 106 Int. Syst. 76 V 6 8 
6
l ¼ 80 GPa, q ¼ 3900 kgm�3, K ¼ 6300� 106 Int. Syst. 256 V 6 29 
30
l ¼ 80 GPa, q ¼ 15600 kgm�3, K ¼ 6300� 106 Int. Syst. 146 V 6 16 
12.5
l ¼ 80 GPa, q ¼ 7800 kgm�3, K ¼ 9450� 106 Int. Syst. 276 V 6 32 
30
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In the following, the function F which appears in relationship (19) is made explicit for stages I and III but is
hard to be determined for the transient stage II.

3.7.1. Stage I
To determine the functional dependence (19), it is necessary to vary each non-dimensional parameter

while keeping the others constant. All calculations are carried out with the constitutive law (3).
From the numerical results the following relationship is found for Eq. (19).

C
V � Vc


 C
V


 a
K
l

� �0:97 l
qCpT0

� �0:98

b1:01 1

m1:08
ð�Anþ BÞ ð20Þ

for V � Vc. We obtain A 
 257 and B 
 38:2; a depends on the thermal softening exponent m. The cal-
culations show no influence of qV 2=l, kT0=V lh, h=L and h=edef on C=V . Because of the precision related to
the shear band speed calculations, the exponents can be fairly approximated by 1. Thus (20) becomes

C
V

¼ a
K
l

� �
l

qCpT0

� �
b
m
ð�Anþ BÞ ¼ a

Kb
qCpT0m

ð�Anþ BÞ ð21Þ

Fig. 9 shows, for instance, the evolution of the parameter C=V as a function of respectively K=l, qCpT0=l
and n.

It is worth to emphasize that this law has been identified for a certain range of variation of the pa-
rameters beyond which no extrapolation should be made:

Fig. 9. Evolution of the shear band speed C normalized by the applied velocity V as a function of: (a) K=l, (b) qCpT0=l, (c) n for fixed
values of the other non-dimensional parameters. All calculations refer to stage I. The parameters involved in the problem are K=l,
qV 2=l, qCpT0=l, kT0=V lh, h=L, e=edef , m, n and b.
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3.7.1.1. Influence of the stress level K. The increase of the shear band velocity with the flow stress level
(see Fig. 9) is interpreted to be related to the higher input of external work in the system. In the vicinity of
the shear band tip, K is included in two terms via the shear stress s. The level of K affects the elastic en-
ergy s2=2l (where s corresponds to the value of the shear stress far ahead the tip of the band) and the
external rate of work sV . As C/V depends linearly on K and does not depend on l, according to rela-
tionship (21), it can be deduced that the propagation of the shear band is controlled by the external work in
stage I.

3.7.1.2. Influence of inertia effects. In the physics of the problem, inertia is likely to influence the band speed
via the term qV 2 which accounts for the kinetic energy effects. Inertia may also occur through elastic wave
propagation. We postulate here that elastic shear waves are of most interest. They propagate with the
velocity C2 ¼

ffiffiffiffiffiffiffiffi
l=q

p
. In expression (21), none of these terms appears. It can thus be deduced that the elastic

wave speed does not play any role on the shear band propagation in this stage and also that the kinetic
effects can be neglected for this range of velocities V ðVc 6 V 6 V �Þ.

3.7.1.3. Influence of heat generation. The term qCpT0=b in the relationship (21) is associated to self heat-
ing due to the dissipation of the fraction b of the plastic work. From (21) it appears that an increase of
Cp (or a decrease of b) leads to a diminution of the shear band speed C. Indeed, according to (8), in-
creasing Cp (or reducing b) leads to a diminution of _TT for a given value of Dp

eq. As a consequence, the stress
drop due to thermal softening is weaker and C decreases. Moreover, the shear band speed is dependent on
the initial temperature T0 as it controls the initial stress level according to (3): a lower initial tempera-
ture leads to an increase of the initial stress and thus to a stronger thermal softening. Consequently C
increases.

3.7.1.4. Influence of the strain rate sensitivity. Increasing m has a stabilizing effect manifesting itself
by a significant decrease of the shear band speed as already mentioned by Mercier and Molinari
(1998). The evolution law of C/V upon m given by (21) is valid for the range of values of m considered
ð0:0056m6 0:05Þ. For higher values of m, shear localization cannot take place according to the instability
criterion established by Molinari and Clifton (1987) for a one-dimensional process under velocity con-
trolled boundary conditions: mð1� mÞ þ nþ m < 0. Note that this criterion cannot be strictly applied to the
2D problem of shear band propagation. However, it gives indications concerning the influence of material
parameters on the instability process.

3.7.1.5. Influence of strain hardening. The strain hardening parameter n is also stabilizing for the shear band
propagation. For nP 0:15, no shear band is observed (see Fig. 9).

3.7.1.6. Influence of the elastic shear modulus l. In stage I, the dependence of C upon l is negligible ac-
cording to the relationship (21). From the physics of the problem, l should be included through two

3:15� 103 6K 6 12:6� 103 MPa, 0:0056m6 0:05,
0:456 b6 1, 40� 103 6l6 160� 103 MPa,
06 n6 0:12, 06 k6 500 W/mK,
19506 q6 15600 kgm�3, 1:256 e=edeff 6 2,
1256Cp6 1000 J/kgK, Vc < V < V �

756 T0 6 600 K,
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different terms: the elastic energy s2=2l and the elastic shear wave speed
ffiffiffiffiffiffiffiffi
l=q

p
. There is no way to combine

these quantities so as to eliminate l and to be compatible with the results (21). Therefore it can be con-
cluded that elastic energy and elastic shear wave speed have no influence on the shear band propagation in
stage I. As a consequence, the fact that the external work controls the shear band propagation in stage I is
confirmed.

3.7.1.7. Influence of the heat conductivity k. As shown previously there is no important effect of k on C for
applied velocities in stage I excepted in the vicinity of Vc. For V < Vc, heat conductivity effects prevent shear
band propagation.

3.7.1.8. Influence of the geometrical defect. As mentioned previously, the magnitude of the geometrical
defect edef has no effect on the stationary shear band speed.

3.7.1.9. Influence of the specimen length L and of the width h of the layer. The specimen length Lmust be high
enough to allow the shear band speed to reach a stationary process, but as soon as this minimum size is
attained, this geometrical parameter does not play any more role on the shear band propagation.

Moreover, the shear band velocity does not depend either on the width h of the layer, as long as h is large
with respect to the shear band width w.

3.7.2. Stage III
Transient stage II is not studied in this paper, since it seems hard to get functional relationships of

the type (21) or (22) for this stage. From the numerical results, the following relationship is obtained for
Eq. (19):

C
V

¼ g
K
l

� �0:92 l
qV 2

� �0:44 l
qCpT0

� �0:45
1

m

� �0:49

b0:52ð�A0nþ B0Þ

which is approximated by:

C ¼ gC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2b

lqCpT0m

s
ð�A0nþ B0Þ ð22Þ

where C2 ¼
ffiffiffiffiffiffiffiffi
l=q

p
corresponds to the elastic shear wave speed. The values A0 
 34:6 and B0 
 5:8 are

obtained; g depends on m. The calculations show no influence of kT0=V lh, h=L and h=edef on C=V . The
evolution of the parameter C=V as a function of K=l, qV 2=l, qCPT0=l is reported in Fig. 10. The influence
of parameters m, n and b is shown in Fig. 11. The analysis was driven for the following values of pa-
rameters:

3.7.2.1. Influence of the stress level K. No dependence of C upon V is obtained in relationship (22) indicating
that the external work does not govern the shear band propagation. Moreover, K appears through the term

3:15� 103 6K 6 12:6� 103 MPa, 0:016m6 0:12,
0:36 b6 1, 40� 103 6 l6 160� 103 MPa,
0:0056 n6 0:15, 06 k6 500 W/mK,
39006 q6 31200 kgm�3 1:256 e=edef 6 2,
2506Cp6 2000 J/kgK, V > V �.
1506 T0 6 1200 K,
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Fig. 11. Evolution of shear band speed C normalized by the applied velocity V as a function of: (a) m (b) n (c) b for fixed values of the

other non-dimensional parameters. All calculations refer to stage III. The parameters involved in the problem are K=l, qV 2=l,
qCpT0=l, kT0=V lh, h=L, e=edef , m, n and b.

Fig. 10. Evolution of shear band speed C normalized by the applied velocity V as a function of: (a) K=l, (b) qV 2=l, (c) qCpT0=l for

fixed values of the other non-dimensional parameters. All calculations refer to stage III. The parameters involved in the problem are

K=l, qV 2=l, qCpT0=l, kT0=V lh, h/L, e=edef , m, n and b.
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K2/l which scales with an elastic energy. An increase of K leads to an increase of the elastic energy release
and thus to a higher shear band speed.

3.7.2.2. Influence of the elastic shear modulus l. The elastic shear modulus is included into the elastic wave
speed

ffiffiffiffiffiffiffiffi
l=q

p
and into the elastic energy term s2=2l. On the one hand, as wave propagation is responsible

for the elastic energy transport to the shear band tip, an increase of l should favorize the energy flux to
the band tip and should lead to an increase of C. But on the other hand, increasing l reduces the level of
the stored elastic energy in front of the band tip and should produce a decrease of C. Because of this
competition between two opposite effects, a variation of l seems to have no influence on the shear band
speed.

Fig. 12. (a) Definition of the characteristic size k ¼ IA of the process zone. The shear band tip I is defined as the point where the

transverse flow vanishes (Vy ¼ 0). (b) Evolution of the effective stress re and of the absolute temperature T within the process zone.
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3.7.2.3. Influence of inertia effects. Inertia appear in (22) through
ffiffiffiffiffiffiffiffi
l=q

p
indicating that wave propagation

cannot be neglected in stage III. Reducing the elastic shear wave speed (while keeping lq constant) leads to
a diminution of C.

Finally, the influence of thermal effects qCpT0=b and of parameters m, n, k, edef , L and h is similar to the
one characterized for stage I.

4. Process zone

To explain the physics of shear band propagation, it is important to understand the complex histories of
deformation, stress and temperature experienced by material particles near the shear band tip. It is useful to
introduce the concept of a process zone, which is the region at the vicinity of the shear band tip where the
strain rate profile changes rapidly from a quasi-uniform to a localized distribution (see Fig. 3). Many
authors have already reported that the propagation of an adiabatic shear band is determined by the critical
phenomena occurring in this zone (Meyers and Kuriyama, 1986; Grady, 1992). The characteristic size (k) of
the process zone is evaluated as follows. In our configuration, the Vy component of velocity representing the
flow of material from the upper to the lower part of the specimen provides a way of measuring the size of
the process zone. Fig. 12a shows the evolution of Vy with respect to the position x along the line y ¼ 0, for a
given value of the applied velocity V (see Fig. 2 for definition of axes x and y). The shear band tip is defined
as the point I where Vy ¼ 0. The characteristic size of the process zone is defined as IA, with A being the
point on the y-axis corresponding to 10% of the maximum value of Vy

		 		 ( on the increasing branch of the
curve Vy versus x).

In the Fig. 12b, the temperature and equivalent stress profiles are plotted along the line y ¼ 0 for the
constitutive law (3). The entrance to the process zone (at point A) is accompanied by a very slow decrease of
the equivalent stress and by a small increase of temperature. A sudden stress softening and a strong
temperature growth are initiated at the point B where Vy

		 		 reaches its maximum. The temperature at point B
is noted TB.

The stress drop at point B due to thermal softening is the motor of adiabatic shear band propagation.
To illustrate this point, a comparison is made between the constitutive laws (3) and (7). Different values of
the thermal softening parameter p are considered in (7). Fig. 13 shows, for the constitutive law (7) and

Fig. 13. Evolution of the shear band speed C and of the temperature TB at point B (the core of the process zone) with respect to the

thermal softening parameter p of the constitutive law (7). Small values of p correspond to a strong rate of thermal softening and to

large values of the propagation speed C.
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V ¼ 50 m/s, the evolution of C and TB with respect to p. Small values of p correspond to a strong rate of
thermal softening and to large values of the propagation speed C. This indicates that the shear band
propagation is driven by thermal softening. This is further demonstrated by the results of Fig. 14a where
ore=oT is represented as a function of T for different p. The values of ore=oT at the point B (temperature TB)
are stressed with circles. Comparing with Fig. 13, it appears that the higher the values of ore=oTj j at TB
(characterizing thermal softening), the more rapidly the band propagates. The evolution of ore=ox with

Fig. 14. (a) Evolution of ore=oT as a function of T for several values of p. Fig. (a) is obtained by elimination of the spatial variable x
between ore=oT ðx; y ¼ 0Þ and T ðx; y ¼ 0Þ for points ðx; y ¼ 0Þ being in the process zone. The values of ore=oT corresponding to the

temperature at the core B of the process zone are stressed by small circles. Comparing with Fig. 13, it can be noted that the largest shear

band velocities are obtained for the highest values of the thermal softening jore=oT j at B. (b) Evolution of ore=ox with respect to the

position x on the y-axis of the sample. For each constitutive law, the distribution of ore=ox is represented at the time when the core B of

the process zone reaches the position x ¼ 5 mm. The results confirm those of (a). The constitutive laws for which the stress softening

ore=ox at B is the highest produce the largest shear band velocities.
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respect to the position x, represented in Fig. 14b confirms this remark. Indeed, the constitutive laws for
which the stress softening ore=ox at B is the highest produce the largest shear band velocities.

Moreover, results for the constitutive law (3) are also reported in Fig. 14. It is reminded that for
p ¼ 0:85, the constitutive laws (3) and (7) coincide in the range of temperature 3006 T 6 500 K. For these
two constitutive laws, the same thermal softening ore=oT is obtained within the process zone for T 6 TB. It
is remarkable, as shown in Fig. 5, that the same shear band speeds are obtained for both constitutive laws.
Therefore, it is most probable that the shear band speed is controlled by the intensity of thermal softening
ore=oT at the point B, which defines the core of the process zone.

Coming back to the Fig. 13, it appears that the temperature TB increases with p. This can be explained by
the fact that thermal softening is stronger for small values of p. Thus, the localization process occurs sooner
and the overall temperature of the specimen is lower.

Fig. 15. Evolution of the characteristic size of the process zone k with respect to the applied velocity V.

Fig. 16. Evolution of the Vy velocity component as a function of the x-coordinate on the axis y ¼ 0, for several values of V. The origin

of the frame is located at the shear band tip I (where Vy ¼ 0). A strong dependence of Vy with V is observed.
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It is also of interest to analyse the evolution of the characteristic size k of the process zone, with respect
to the applied velocity V. The results reported in Fig. 15 can be represented by the following law:

k 
 UV �0:32 ð23Þ

where U is a constant. The relationship (23) shows that the process zone becomes shorter when the applied
velocity increases. This indicates that the flow of material from the upper to the lower part of the specimen
(quantified by Vy) takes place in a shorter region. However, if we now consider the values of Vy on the line
y ¼ 0, it can be seen in Fig. 16 that the maximum of jVy j increases with V as:

jVy jmax 
 WV 1:3 ð24Þ

Denoting byM the volume of material which flows through the line y ¼ 0 per unit of time, it can be stated
that M is of the order of k Vy

		 		
max

, which is nearly proportional to V. Mercier and Molinari (1998) have
already found this dependence; more precisely they obtained the relationship M ¼ V ðh� h0Þ=2 (where h
and h0 are the half width of the layer and the half of the shear band width, respectively).

5. Conclusion

Numerical simulations have been carried out in order to study the dynamic propagation of an adiabatic
shear band in the configuration of Marchand and Duffy’s experiments. A layer of finite length L and of
finite width 2h was subjected to simple shear with constant and uniform velocities 	V applied at the upper
and lower boundaries. The effect of loading conditions and of material properties on the stationary shear
band speed were analysed. The influence of the applied velocity V on the shear band speed C was char-
acterized. Three different stages were defined: the first one (stage I) which shows a strong variation of C
with V, the second one (stage II) where a tendency towards an asymptotic value is seen and the last one
(stage III) where C is quasi constant. An approximate value for the velocity V � corresponding to the end of
stage I was determined from an energy balance relationship.

Heat conductivity was found to be a regularizing parameter determining the width of the shear band.
When the problem with heat conductivity was compared to the adiabatic case (no heat conduction), no
difference was observed for the evolution of C with respect to V, excepted the fact that heat conductivity
introduces a critical velocity Vc below which no shear band propagation is observed. It was also found that
the shear band width has only a slight influence on the shear band speed. The velocity Vc characterizes the
transition from an isothermal to an adiabatic process.

A dimensional analysis allowed to quantify the different terms governing the shear band propagation.
For stage I, the dependence of C upon V is quasi-linear and the propagation is controlled by the external
work provided at the specimen boundaries. In this stage, elastic wave propagation effects have a little in-
fluence as the reported shear band speeds are low. In stage III, the propagation of the shear band is
controlled by the elastic energy release. Indeed, as the shear band speeds are quite high, elastic wave
propagation has an important role to play in controlling the amount of elastic energy released in the vicinity
of the process zone. This elastic energy is transferred and dissipated within the process zone. The value of C
appears to be dependent on the elastic shear wave speed as in fracture mechanics. For each of these stages, a
relationship indicating the dependence of C with respect to the loading conditions, and with respect to the
material and geometrical parameters was obtained.

The shear band speed was found to be determined by the phenomena occurring inside the process zone.
The size k of the process zone decreases when the applied velocity V increases. It was demonstrated that the
shear band propagation is controlled by the amount of stress softening occurring at the core of the process
zone.
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